

ABSTRACT

This tutorial will show how recent advances in design and manufacturing have improved the performance of few-mode fibers, and what are the challenges to turn them into implementable solutions. © 2020 The Author(s)

OCIS codes: (060.2280) Fiber design and fabrication; (060.2330) Fiber optics communications

ACKNOWLEDGMENT	
Prysmian Group	<i>France and The Netherlands</i> A. Amezcua-Correa, M. Bigot-Astruc, D. Boivin, C. Gonnet, H. Maerten, <i>D. Molin#</i> , LA. de Montmorillon, L. Provost, JB. Trinel; F. Achten, K. de Jongh, I. Milicevic, M. van Stralen
NOKIA	Bell Labs France and USA K. Benyahya, S. Bigo, G. Charlet#, Ph. Genevaux#, C. Koebele#, M. Salsi#, C. Simonneau# N. Fontaine, H. Chen, M. Mazur, R. Ryf
	France N. Barré, P. Jian, G. Labroille, JF. Morizur
Phi AM Water and a later	Iniversity of Lille , France L. Bigot, C.C. Castiñeiras-Carrero#, G. Le Cocq#, A. Le Rouge#, Y. Quiquempois, B. Sévigny#
۲. eee	Iniversity of Central Florida , USA J.C. Alvarado-Zacarias, R. Amezcua-Correa, J.E. Antonio-Lopez, G. Li, H. Liu, G. Lopez- Galmiche, Z. Sanjabi Eznaveh, A.M. Velazquez-Benitez, N. Wang, H. Wen, S. Wittek
TU/e UNIVERSITY OF TECHNOLOGY	Findhoven University of Technology , The Netherlands S. van der Heide, C.M. Okonkwo, R.G.H. van Uden, J.J.A. van Weerdenburg
i i i i i i i i i i i i i i i i i i i	<i>Iniversity of L'Aquila, Italy</i> C. Antonelli, A. Mecozzi
#No more in this Con	Advances in FME Design and Manufacturing SILLARD OEC'20

OUTLINE

1. INTRODUCTION

2. DESIGN

- 2.1. Basics
- 2.2. Weakly-Coupled Few-Mode Fibers (FMFs)
- 2.3. Low Differential-Mode-Group-Delay (DMGD) FMFs

3. MANUFACTURING

- 3.1. State of the Art
- 3.2. Recent Advances
- 3.3. Perspectives and Challenges

4. CONCLUSION

1. INTRODUCTION

- 2. DESIGN
 - 2.1. Basics
 - 2.2. Weakly-Coupled Few-Mode Fibers (FMFs)
 - 2.3. Low Differential-Mode-Group-Delay (DMGD) FMFs

3. MANUFACTURING

- 3.1. State of the Art
- 3.2. Recent Advances
- 3.3. Perspectives and Challenges

4. CONCLUSION

FMFs and MODE DIVISION MULTIPLEXING (MDM)

FMF in **1977-79*** (2-LP-mode fibers for higher bandwidths, <u>not for MDM</u>)

ufacturing | STLLARD | OF

MDM demonstration over MMF in 1982** (2 modes over 10m)

MIMO-MDM demonstrations over MMFs in the 2000s***

MDM transmissions over specifically-designed FMFs in 2011*

9 years of intensive research

<u>New FMFs</u>, components and subsystems

Impressive record transmissions (3 modes over 1000s of km, 6 modes over 100s of km, 45 modes and 100s of Tbps over 10s of km)

Significant efforts to turn research demonstrations into implementable solutions (10s and 100s of Gbps without MIMO, real-time 2x2 & 4x4 MIMOs and 6x6 MIMO [coupled-core fiber])

*J. Sakai and T. Kimura, Opt. Lett. 1, p.169 (1977); K. Kitayama et al., IEEE-JQE 15, p.6; L.G. Cohen et al., OFC, ThC2 (1979) **S. Berdagué and P. Facq, Appl. Opt. 21, p.1950 (1982) ***H.R. Stuart, OFC'00, ThV2; C.P. Tsekrekos et al., ECOC'05, We4.P.113; S. Schöllmann OFC'07, OTuL2; B.C. Thomsen, OFC'10, OThM6; B. Franz et al., ECOC'10, Tu.3.C.4 *OFC'11: A. Li at al., PDPB8; M. Salsi et al., PDPB9; R. Rvf et al., PDPB10 Advances in EME Design and Manufacturing | SILIARD LOFC'20_6

FMFs

STANDARD FIBERS (\bullet)

Standard manufacturing processes, standard 125 & 250µm dimensions (large scale production), low attenuations, easy splicing

NON-STANDARD FIBERS (•)

Mostly non-standard manufacturing processes and non-standard dimensions (short lengths), relatively high attenuations (≥ 0.25 or ≥ 0.5 dB/km)

OAM Fibers RING Fibers MULTI-ELEMENT Fibers ELLIPTICAL-CORE Fibers HOLLOW-CORE PHOTONIC-BANDGAP Fibers

FMFs

OUTLINE 1. INTRODUCTION 2. DESIGN 2.1. Basics 2.2. Weakly-Coupled FMFs 2.3. Low-DMGD FMFs 3.1. State of the Art 3.2. Recent Advances 3.3. Perspectives and Challenges 4. CONCLUSION

11

1. INTRODUCTION

2. DESIGN

- 2.1. Basics
- 2.2. Weakly-Coupled FMFs
- 2.3. Low-DMGD FMFs

3. MANUFACTURING

3.1. State of the Art: Weakly-Coupled FMFs

- 3.2. Recent Advances
- 3.3. Perspectives and Challenges

4. CONCLUSION

1. INTRODUCTION

2. DESIGN

- 2.1. Basics
- 2.2. Weakly-Coupled FMFs
- 2.3. Low-DMGD FMFs

3. MANUFACTURING

3.1. State of the Art: Low-DMGD FMFs

Advances in EME De

in FMF Design and Mar

ufacturing | STI | ARD | O

- 3.2. Recent Advances
- 3.3. Perspectives and Challenges

4. CONCLUSION

LOW-DMGD FMFs

2-MG [3-Spatial-Mode] Fibers

R. Ryf et al., OFC'11, PDPB10

- T. Sakamoto et al., OFC'12, OM2D.1
- L. Grüner-Nielsen et al., OFC'12, PDP5A.1; ECOC'14, P.1.15
- M.-J. Li et al., OECC'12, 5C3-2
- R. Maruyama et al., ECOC'12, Tu.1.F.2

3-MG [6-Spatial-Mode] Fibers T. Mori et al., OFC'13, OTh3K.1 R. Ryf et al., OFC'13, PDPA.1

4-MG [10-Spatial-Mode] Fibers P. Sillard *et al.*, OFC'14, M3F.2 T. Mori *et al.*, OFC'14, M3F.3 *P. Sillard et al.*, JLT 35, p.734 (2017)

5-MG *[15-Spatial-Mode]* Fibers P. Sillard *et al.*, OFC'15, M2C.2; JLT **34**, p.425 (2016) N.K. Fontaine *et al.*, OFC'15, Th5C.1

50µm Multi-[55-Spatial-]**Mode** Fiber <u>P. Sillard et al.</u>, <u>JLT 34</u>, <u>p.1672</u> (2016); <u>OFC'17</u>, <u>Tu2J.4</u> <u>P. Sillard et al.</u>, <u>JLT 35</u>, <u>p.1444</u> (2017)

1. INTRODUCTION

2. DESIGN

- 2.1. Basics
- 2.2. Weakly-Coupled FMFs
- 2.3. Low-DMGD FMF

3. MANUFACTURING

- 3.1. State of the Art
- 3.2. Recent Advances: Weakly-Coupled FMFs
- 3.3. Perspectives and Challenges

4. CONCLUSION

1. INTRODUCTION

2. DESIGN

- 2.1. Basics
- 2.2. Weakly-Coupled FMFs
- 2.3. Low-DMGD FMFs

3. MANUFACTURING

- 3.1. State of the Art
- 3.2. Recent Advances: Low-DMGD FMFs
- 3.3. Perspectives and Challenges

4. CONCLUSION

LOW-DMGD FMFs

2-MG [3-Spatial-Mode] Fibers

R. Ryf et al., OFC'11, PDPB10

- T. Sakamoto et al., OFC'12, OM2D.1
- L. Grüner-Nielsen et al., OFC'12, PDP5A.1; ECOC'14, P.1.15
- M.-J. Li et al., OECC'12, 5C3-2
- R. Maruyama et al., ECOC'12, Tu.1.F.2

3-MG [6-Spatial-Mode] Fibers T. Mori et al., OFC'13, OTh3K.1 R. Ryf et al., OFC'13, PDPA.1

4-MG [10-Spatial-Mode] Fibers P. Sillard *et al.*, OFC'14, M3F.2 T. Mori *et al.*, OFC'14, M3F.3 <u>P. Sillard et al.</u>, JLT **35**, p.734 (2017)

5-MG [15-Spatial-Mode] Fibers
P. Sillard *et al.*, OFC'15, M2C.2; JLT 34, p.425 (2016)
N.K. Fontaine *et al.*, OFC'15, Th5C.1
D. Molin et al., OFC'18, W3C.1

50µm Multi-[55-Spatial-]**Mode** Fiber <u>P. Sillard et al., JLT</u> **34**, <u>p.1672</u> (2016); <u>OFC'17</u>, <u>Tu2J.4</u>; <u>**R. Ryf et al.**</u>, <u>ECOC'18</u>, <u>Th3B.1</u> <u>P. Sillard et al.</u>, <u>JLT</u> **35**, <u>p.1444</u> (2017)

Advances in EME Design and Manufacturing | STLLARD | OF

Advances in FMF Design and Manufacturing | SILLARD | OFC'20

OUTLINE 1. INTRODUCTION 2. DESIGN 2.1. Basics 2.2. Weakly-Coupled FMFs 2.3. Low-DMGD FMFs 3. Low-DMGD FMFs 3.1. State of the Art 3.2. Recent Advances 3.3. Perspectives and Challenges: Low-DMGD FMFs 4. CONCLUSION

1. INTRODUCTION

2. DESIGN

- 2.1. Basics
- 2.2. Weakly-Coupled FMFs
- 2.3. Low-DMGD FMFs

3. MANUFACTURING

- 3.1. State of the Art
- 3.2. Recent Advances
- 3.3. Perspectives and Challenges

4. CONCLUSION

MDM and FMFs: Impressive Progress

Mode Division Multiplexing

→ S. Berdagué and P. Facq, Appl. Opt. (1982): 2 spatial modes over 10m

- → A. Li at al.; M. Salsi et al.; R. Ryf et al. OFC (**2011**): 2 and 3 spatial modes over 10s of km
- ➡ K. Shibahara et al., OFC (2018): 3 spatial modes over 6,300km
- ☆ R. Ryf et al., ECOC (2018): 45 spatial modes over 26.5km

Few-Mode Fibers

- → J. Sakai and T. Kimura, Opt. Lett. (1977): 3 spatial modes with DMGD <100ps/km
- → A. Li at al.; M. Salsi et al.; R. Ryf et al. OFC (**2011**): 2- & 4-(LP)MG and 3-spatial-mode fibers
- ➡ M. Bigot et al., NETWORKS (2017): 7-(LP)MG Fiber with XT ≤-24dB/km
- ⇒ D. Molin et al., OFC (2018): 15-spatial-mode fiber with DMGD <80ps/km

DMGD Compensation

- → K. Morishita et al., IEEE Trans. on MTT (1982): "splicing the fibers with the opposite departures from the optimum index profile reduces the pulsewidth"
- → T. Sakamoto et al., OFC (2012): 3-spatial-mode link with DMGD <5ps/km
- ⇒ P. Sillard et al., OFC (2017): 36-/45-spatial-mode link with DMGD <50ps/km

Strong Coupling

- → S.D. Personick, BSTJ (1971): "pulse spreading would grow as the square root of the length"
- ➡ G. Rademacher et al., OFC (2018): square-root behavior after 100s of km over 3-spatial-mode DMGD-compensated links
- ➡ K. Shibahara et al., OFC (2019): square-root behavior after 1,000s of km using cyclic mode permutation over 3-spatial-mode non-DMGD-compensated links

